

Research on Multi-user Data Sharing Service Based on Object Storage

Huiran Zhang1, 2, 3, Xin Wang1, Shengzhou Li1, Tao Xu1, Zhiting Guo1, Hongqing Hu1, Xue
Chen1, Chengfan Li1, Xiao Wei1, Quan Qian1 and Dongbo Dai1, a

1School Computer Engineering and Science, Shanghai University, Shanghai 200444, China
2Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444,

China
3Materials Genome Institute of Shanghai University, Shanghai University, Shanghai 200444, China

adbdai@shu.edu.cn

Keywords: Cloud storage, Data sharing, Data security, Access control.

Abstract: Existing Object Storage providers generally use signature as data file access credential,
and AWS Signature method is widely recognized as a standard security notion. However, most of
the Object Storage service suffer from the disadvantages of weak data sharing security, which has
severely impeded the daily usages of cloud storage users. In this paper, we propose a new
framework, which called Multi-user Data Sharing Scheme (MDSS), bases on Object Storage for the
security of sensitive personal data in data sharing. For the sake of data security, permission
authentication algorithm is added to AWS Signature method. In addition, this scheme can solve the
problem of real-time synchronization of multi-machines data and fine-grained data sharing strategy
creation.

1. Introduction
With the popularity of cloud computing, people are gradually getting accustomed to a new

method of data sharing in which the data is stored on the cloud and the hosts are used to manipulate
data from the cloud [23]. Personal host only have limited storage spaces and computing
performance. On the contrary, the cloud has massive number of resources. As a result, to address
the problem of limited resources, using cloud resources is a feasible solution [12].

There are three main solutions used for storage in the cloud: Block storage, File storage and
Object storage. The Block storage has two types of Direct- Attached Storage (DAS) [25] and
Storage Area Network (SAN) [18]. Block storage has the advantages of high input/output (I/O), low
latency, and high reliability. Many cloud computing services such as AWS elastic block storage [8],
Azure premium storage [14], Google persistent disks [20] and Cinder block storage services for
OpenStack [11], provide block storage solution for personal host. But it also has some in-
surmountable defects like poor expansibility, inability to provide cross-machine data migration
services [7]. File storage provides data storage services through accessing file. Network Attached
Storage (NAS) [6], as a common file storage, can provide file sharing and data backup functions for
different operating systems. Object storage is fundamentally different from traditional block or file
storage systems [3]. Object storage organizes information into containers in flexible sizes, referred
to as objects. Object storage has the advantages of low latency of block storage and sharing of file
storage. The Object storage examples are AWS S3 [16] [23], Swift object storage services for
OpenStack [1], etc.

Data sharing is a very important practical requirement for users. Nowadays, cloud storage
services are widely used, and the data security problem becomes more and more severe [13]. User
can upload data to the cloud and share their data with other users. These three storage methods can
solve the problem of data recovery and limited storage space. But some of the above methods are
for single-user services, which have not data sharing feature, such as Block storage. Although File
storage and object storage provide data sharing, but it is not perfect for sharing permissions. These

2019 2nd International Conference on Mechanical Engineering, Industrial Materials and Industrial Electronics (MEIMIE 2019)

Published by CSP © 2019 the Authors 58

methods are not meet all the requirements of data owners. Data privacy of sensitive personal data is
a great concern for data owners. In this case, data privilege management is a major issue.

Apparently, the cloud storage service provider should handle not only data recovery and limited
storage space, but also the security of sensitive personal data. Rawal et al. [19] propose a secure
disintegration protocol (SDP) for the protection of privacy on-site and in the cloud. Ning et al. [17]
propose the first accountable authority revocable CP-ABE based cloud storage system with
white-box traceability and auditing, referred to as CryptCloud+. However, both SDP and
CryptCloud+ aim to solve the security problem of user data in the cloud, and do not focus on the
security problem of user private data sharing. Private data sharing is an urgently-to-be-solved
problem for multiple users. When the same dataset is applied to different studies, or various dataset
is used for the same research, the copy method is not an efficient sharing strategy if the amount of
data is large. Furthermore, if data owner wants to share data with time limit, host limit and other
limits, the problem will become more complicated. In this paper, we propose a new framework,
which called Multi-user Data Sharing Scheme (MDSS), bases on object storage for the security of
sensitive personal data. This scheme can solve the problem of real-time synchronization of
multi-machines data and fine-grained data sharing strategy creation.

2. Our Proposed Mechanism
2.1. System Architecture.

As shown in Fig. 1, the architecture of MDSS in cloud consists of four entities DO (Original
Data Owner), DU (Data User), TA (Trusted Authority) and OSP (Object Storage Provider).

Fig. 1 The architecture of MDSS

(1) DO is an entity with original data who wishes to store data on cloud storage server
maintained by OSP and share the specified data securely with others. DO has the highest authority
of data operation such as share, delete, update, and so on. Before DO uploads data to OSP, DO
registers the data sharing user system in TA to get Key&Secret information. Key&Secret is used to
verify the user’s identity and permissions to manipulate data. DO must use Key&Secret to operate
cloud data including upload original data.

(2) DU is an entity who uses shared data in the OSP. The data operation permission of DU are
controlled by DO, including operating permissions, time limits, resharing limits, host limits, and so
on. In fact, DU first sends data file access request to TA, and then TA validates the user’s request
and returns authorization verification result. Finally, the DU manipulate data file in the OSP
requires authorization verification results as credentials.

59

(3) TA is an entirely credible entity who is responsible for generating and distributing
Key&Secret for members in the data sharing user system. DO can share specified data to members
and set the data sharing strategy. DU requires to use Key&Secret to validate the operation, which is
divided into user identity authentication and data operation authorization authentication. Once the
identity and operation are verified, TA will return authorization verification results to DU. In
addition, in the process of data sharing, DO can change the data sharing strategy at any time.

(4) OSP is a semi-trusted entity who is in charge of saving data file of DO. It will execute the
user data file access request with credentials.

Our proposed scheme can be divided into five parts: user registration, original data file upload,
data sharing strategy creation, authorization verification and data file access.

(5) User registration: DO and DU are user in MDSS. A user can join the multi-user data sharing
system by committing a registration request to TA, who issues a Key&Secret to the user.

(6) Original data file upload: DO use Key&Secret as credential to upload original data file into
CSP for saving and sharing.

(7) Data sharing strategy creation: DU establishes the specified data sharing strategy by sending
a share request to TA. The strategy includes time limit, data operation limit, host limit, mount times
limit, resharing limit, etc.

(8) Authorization verification: User needs to verify user identity and data operation permissions
before manipulating data in CSP. TA return the validation results, which are used in the subsequent
data file access by user.

(9) Data file access: User can manipulate data file in CSP by authorization.

2.2. User mode.
Most of the existing solutions are developed for the alone-user mode, and there is no way to

meet the diverse needs of users, such as data sharing problems. Therefore, multi-user mode will
become the inevitable trend of cloud computing development. The MDSS is a framework for
addressing the inability to provide sensitive data sharing services in an alone-user mode. The MDSS
can be applied flexibly in alone-user mode and multi-user mode according to different
requirements.

2.3. Alone-user mode.
Alone-user mode applies to users without data sharing requirements. In this mode, users can

utilize cloud resources to solve problems with local capacity. Single-user multi-bucket policy is
used to separate the file data from the personal host in alone-machine mode. The data owner marks
the data with a pair of Key&Secret tags, with Bucket as the minimum mount unit. The data owner
can use the same pair of Key&Secret to mount a Bucket on multiple hosts for synchronize data.
Even if the host crashes for no reason, user will not lose any data because data is stored in the cloud.
This mode also improves the security and portability of the data.

2.4. Multi-user mode.
Multi-user mode is an extension of Alone-user mode for users with data sharing requirements.

Data sharing between users is often required, but sharing data by copying is unsafe, unreliable, and
inefficient. Consequently, its necessary to change Alone-user mode to Multi-user mode. In this
mode, data owner can upload their photos, videos, documents and other files to the OSP and share
this data with other users. In addition, data owner can set information such as operation permissions,
time limits and resharing rights when sharing data to other users. The MDSS verifies the validity of
the request when data user requests to operate shared data, and the OSP only responds to legitimate
requests.

2.5. Design MDSS.
In this section, we present our scheme in detail. The MDSS is designed for the sensitive personal

data sharing in the cloud. The main process of MDSS includes user identity authentication module,

60

user operation authentication module, AWS S3 API compatible module and user operation API
module.

2.6. User Identity Authentication.
The first step of MDSS after receiving a data request is to verify user identity legitimacy. During

these years, more users choose to store data in the cloud for persistent storage [25]. Although cloud
computing’s benefits are tremendous, security and privacy concerns are the primary obstacles to
wide adoption [20] [5]. Since MDSS is designed based on object storage, we use AWS S3 signature
verification process as the basis for permission verification. In the object storage, users utilize
Key&Secret to prove their identity. When requesting an operation, data user needs to add some
specified request headers according to the rules, which must carry the legally calculated completed
signature. The users identity is authenticated by MDSS before it responds to user action requests.
The AWS Signature Version 4 process is shown as Fig. 2.

Fig. 2 AWS Signature Version 4 process

Table.1. UIA Algorithm

Algorithm 1. The user authority verification algorithm.
Input: User’s operation request with AWS S3 V4 signature parameters.
Output: Operation response.
Step 1. Extract request signature RS from user’s operation request.
Step 2. Extract the user’s AccessKey, type of request operation, data of request operation and other
relevant information from the user operation request.
Step 3. Get user’s SecretKey and authority information from platform database according to
AccessKey.
Step 4. Calculate server signature SS using the AWS S3 V4 computation process.
Step 5. Compare signatures RS with SS. If the two signatures are equal, the platform execute the
user’s operation request and returns the corresponding information. If the two signatures are different,
the platform will reject the user’s operation request and return an error code.

In fact, the AWS S3 storage protocol is to add some specified request headers to the request
operation. Signature is used to verify the identity of the requested action, prevent data tampering
and the signature from being stolen. Client uses the Key&Secret, HTTP method and other
information to get the signature according to the AWS signature calculation process, and adds the
signature to the request header. The MDSS verifies the identity of the request operation in line with
AWS Signature Version 4. The SignedHeaders element in the request header is designed to protect
data security and prevent file tampering. The x-amz-date element is to prevent the signature from

61

being stolen. Authenticating user identity is the first issue to be addressed. We propose the UIA
algorithm to verify the validity of user identity. The Algorithm is shown in the table below.

2.7. User Operation Authentication.
After the user identity authentication is successful, MDSS will perform operation permission

verification, and only the operation that is verified will get the correct response. Data operation has
five levels of authority in MDSS, from low to high, respectively is Get, Post, Put, Delete, Share.
The data owner has the highest data operation authority. Data owner can share data to other users on
demand, so data users operation permission is set by data owner. Data user operating requirement
has to be less than the current authority level. The MDSS will verify the user’s operation request
according to the recorded information, which can prevent data leakage and ensure data security and
reliability.

2.8. AWS S3 API Compatible module.
The upper layer of the user permission authentication module is the API module, including AWS

S3 API Compatible module and User Operation API module. The function of the compatible
module is to realize the migration of user data by compatible with the standard API in the market, to
avoid data loss caused by the user replacement of OSP. The API compatible module implements 10
major AWS S3 API operations, which includes service API, bucket API and object API. The
implementation of the MDSS API refers to AWS S3 REST API introduction. To ensure that users
can apply the S3fs tool to mount buckets in the storage service, the request header and response
header of the platform API are consistent with the descriptions in the AWS S3 REST API
documentation. The compatible API operation is shown in Table 2.

Table.2. The URL design of API compatible module

Id URL Method Description

1 / GET This implementation of the GET operation returns a list of all
buckets owned by the authenticated sender of the request.

2 / PUT This implementation of the PUT operation creates a new bucket.

3 /bucket DELETE This implementation of the DELETE operation deletes the bucket
named in the URI.

4 /bucket HEAD This operation is useful to determine if a bucket exists and you
have permission to access it.

5 /bucket GET This operation is useful to determine if a bucket exists and you
have permission to access it.

6 /bucket/object PUT This implementation of the PUT operation adds an object to a
bucket.

7 /bucket/object DELETE This implementation of the DELETE operation deletes the object
named in the URI.

8 /bucket/object POST This implementation of the POST operation deletes the
multi-object named in the URI.

9 /bucket/object HEAD The HEAD operation retrieves metadata from an object without
returning the object itself.

10 /bucket/object GET This implementation of the GET operation retrieves objects from
server.

2.9. User Operation API module.
This module is used for user information management, including user management, Key&Secret

management, third-party user system compatibility and data sharing operations. Data owner uses
the data sharing API to implement the specified data sharing operation. By default, data user only
has minimal data manipulation permissions. Once the user’s Key&Secret is generated, no
modifications are allowed, but the MDSS supports deletion and re-creation. Basically, AWS S3 API

62

Compatible module provides the service for direct operational data. User Operation API module
implements access control by managing user information. The API design of this module is shown
in Table 3.

Table.3. The URL design of user operation API module

Id URL Method Description

1 /key POST This implementation of the POST operation adds a
Key&Secret to a specified user.

2 /key DELET
E

This implementation of the DELETE operation deletes
a specified Key&Secret.

3 /key GET
This implementation of the GET operation re- turn a list

of all Key&Secrets owned by the authenticated sender of
the request.

4 /v1/user POST This implementation of the POST operation creates a
new user.

5 /v1/user PUT This implementation of the PUT operation up- dates the
specified user information.

6 /v2/user GET This implementation of the GET operation compatibles
with third-party user systems.

7 /user/userid DELET
E

This implementation of the DELETE operation deletes
the specified user information.

8 /users GET This implementation of the GET operation re- turn a list
of all user information.

9 /share POST Create a specified data sharing policy.

10 /share DELET
E Revoke a specified data sharing policy.

11 /share PUT Modify the specified data sharing policy.

12 /share/userid GET Get the list of data sharing policies for the specified
user.

3. Experiments
In this section, we conduct experiments on real server to evaluate the feasibility of the MDSS

framework. The MDSS is a framework of multi-user data sharing scheme bases on object storage in
the cloud. This framework has no restrictions on the underlying object storage provider. You can
use any object storage service as the underlying OSP of MDSS, and we use the open source service
Minio as the OSP. In this experiment, we use the virtual machine as the test host for multi-user data
sharing service. Each virtual machine rep- resents a personal host for the user. We use a server to
provide users with virtual machine services. After have compared several widely-used virtualization
technologies such as KVM [10], XEN [2], Hyper-V [13] and LXC [4][9], according to the actual
situation, we finally chose to use KVM as a virtualization technology to provide services for users.

In the Alone-user mode or in the Multi-user mode, this framework separates data storage
services from user personal hosts. The Alone-user mode focuses on improving the reliability and
availability of data, while the Multi-user mode solves the problem of sharing data with permission
on the alone-machine basis. The MDSS is already compatible with the key AWS S3 APIs, so users
can apply the s3fs tool to mount buckets to the personal hosts and users can manipulate the data as
if it was a local disk. When data owner shares his/her bucket with another user, the MDSS will
record information about shared data, including shared permission, shared time limit and so on. The
MDSS will verify the user’s operation request according to the recorded information, which can
prevent data leakage and ensure data security and reliability.

This experiment was developed using Django, an open source python web application
framework. The database design of the experiment is shown in Fig 3. The database is designed as

63

three data tables: s3 buckets, s3 users and s3 shares. Data table s3 buckets records information about
bucket, including creation time, creator information and so on. Data table s3 users records in-
formation about users, including access key, secret, creator ID and creation time etc. Data table s3
shares records permission information for data sharing between users, including shared bucket
information, owners and sharers information, permission and deadline etc. To begin with, after
receiving a user’s operation request, the MDSS extracts the users Access from the request header.
According to Access, the corresponding Key&Secret and authorization information is found in the
database, and the signature is calculated. If the two signatures are the same, the user identity is legal.
Furthermore, the module performs permission verification on the user’s operation request. The
platform executes the requested operation only when the operation request permission is less than or
equal to the owned permission.

Fig. 3 The database design of the experiment

The API module of MDSS is divided into two parts, the compatible module and user operation
module. The compatible module is developed on the basis of the AWS S3 REST API
documentation. User operation module is developed according to the actual needs of users, with the
focus on Key&Secret management and data sharing operation. User identity and operation
authentication are implemented in combination with AWS Signature Version 4 and database
records.

64

4. Results and Analysis
This experiment uses real server as management node and three virtual machines as test hosts for

MDSS. The bucket in the MDSS can be mounted to the personal host by using the s3fs tool. S3fs
automatically calculates AWS Version 4 signatures and sends requests to the server based on user
actions, waiting for the server to respond. When the bucket in the MDSS is successfully mounted, the
user can manipulate the data in the bucket as if it was a local disk. Postman tool can verify that the
API conforms to the specification. Test 1 is a requested test for the GET Service API, adding the
corresponding Key&Secret, AWS Region and Service Name information, the postman will
automatically generate a standard request header according to the signature calculation method. The
response information of a legitimate GET Service request is shown in Test 1. Note that the response
of request must be the same as AWS S3 API documentation.

Test1 A legitimate GET Service request

Request:

GET / HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: 127.0.0.1:8000
X-Amz-Content-Sha256: e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b9
34ca495991b7852b855
X-Amz-Date: 20180822T012433Z
Authorization: AWS4-HMAC-SHA256 Credential=ds3test/20180822/shu/s3/aws4
request, SignedHeaders=content-type;host;x-amz-content-sha256;x-amz-date,
Signature=2c212cf16e1403498fa30694973efd8415c63a7f7c45e1a3ec79a
3075a41d182

Response:

<?xml version=”1.0” encoding=”UTF-8” ?>
<ListAllMyBucketsResult>
<Owner>
<ID>17721803</ID> <DisplayName></DisplayName>
</Owner>
<Buckets>
<Bucket>
<Name>ds3test</Name> <CreationDate>2018-05-08T02:39:07.099896+00:00
</CreationDate>
</Bucket>
</Buckets>
</ListAllMyBucketsResult>

After implementing the MDSS, User can mount Bucket to personal host using the s3fs. When the
mount command is executed, client can use the df command to check if the bucket has been
successfully mounted. The successful mount will display that the available space is 256T. The client
can manipulate the data in the Bucket as if it was a local disk. Each operation request executes the
authentication module and the operation permission authentication module, and only the
authenticated request platform will respond. Therefore, when private data is shared between users,
the data user must have a reasonable level of authority to operate the bucket. Otherwise, the request
will not be answered. The response information of an illegal GET Service request is shown in Test 2.

Test2 A illegal GET Service request

Reque
st:

GET / HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: 127.0.0.1:8000
X-Amz-Content-Sha256: e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b9
34ca495991b7852b855
X-Amz-Date: 20180822T021751Z

65

Authorization: AWS4-HMAC-SHA256 Credential=error/20180822/shu/s3/aws4
request, SignedHeaders=content-type;host;x-amz-content-sha256;x-amz-date,
Signature=dc6d56a63f40b51657379d27d9626455cc39db0bd26bdd0b51d4a1f
593f65936

Respo
nse:

<?xml version=”1.0” encoding=”UTF-8” ?>
<AuthenticationFailed>

<Error>
<Code>AccessDenied</Code> <Message>AccessDenied</Message>

</Error>
</AuthenticationFailed>

The three test hosts for the data sharing experiment were vm01, vm02 and vm03. Host vm01 is the

owner of bucket ‘test1data’ and creates a data sharing policy. The shared data operation permission
set by vm02 is GET, and vm03 is DELETE. The three test hosts mount bucket ‘test1data’ to the local
using their respective Access&Secret messages. Because vm02 has only readable permissions, it is
not possible to modify the shared data. Host vm03 has permission to modify data. The experimental
results prove that the three hosts can efficiently perform real-time data synchronization. The
experimental process is shown in Fig 4.

Fig. 4 Experimental process

5. Conclusion
In this work, we propose the MDSS method to address the security problem of sensitive personal

data in data sharing. The MDSS enables secure data storage to introduce the AWS S3 signature
calculation algorithm and operation the data of Bucket like a local disk. In general, the MDSS
separates the user personal host from the data storage service, which can solve the problems of data
recovery, data migration and limited storage space of the personal host. Data user can realize
real-time synchronize data by mounting the same Bucket on multiple hosts. Data owner can set the
permission information when sharing personal data, such as operation permission, time limit,
resharing limit, host limit. The MDSS will validate the request and only respond to legitimate

66

requests to ensure greater user data security. The MDSS is a framework for addressing data sharing
security without restricting the OSP.

Acknowledgements
This work was supported by the National Key Research and Development Program of China under

Grant No.2017YFE0117500.

References
[1] Arnold J (2014) Openstack swift: Using, administering, and developing for swift object storage. ”
O’Reilly Media, Inc.”
[2] Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfield A
Xen and the art of virtualization. In: ACM SIGOPS operating systems review, 2003. vol 5. ACM,
pp 164-177.
[3] Barton M, Reese W, Dickinson JA, Payne JB, Thier CB, Holt G (2015) Method for handling
large object files in an object storage system. Google Patents.
[4] Bernstein D (2014) Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud
Computing (3):81-84.
[5] Cui H, Deng RH, Li Y (2018) Attribute-based cloud storage with secure provenance over
encrypted data. Future Generation Computer Systems 79:461-472.
[6] GibsonGA, VanMeterR (2000) Networkattachedstoragearchitecture. Communications of the
ACM 43 (11):37-45.
[7] Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Khan SU (2015) The rise of big data on
cloud computing: Review and open research issues. Information systems 47:98-115.
[8] zrailevsky Y, Bell C (2018) Cloud Reliability. IEEE Cloud Computing 5 (3):39-44.
[9] Joy AM Performance comparison between linux containers and virtual machines. In: Computer
Engineering and Applications (ICACEA), 2015 International Conference on Advances in, 2015.
IEEE, pp 342-346.
[10] Kivity A, Kamay Y, Laor D, Lublin U, Liguori A kvm: the Linux virtual machine monitor. In:
Proceedings of the Linux symposium, 2007. Dttawa, Dntorio, Canada, pp225-230.
[11] Kumar R, Gupta N, Charu S, Jain K, Jangir SK (2014) Open source solution for cloud
computing platform using OpenStack. International Journal of Computer Science and Mobile
Computing 3 (5):89-98.
[12] Leinenbach D, Santen T Verifying the Microsoft Hyper-V hypervisor with VCC. In:
International Symposium on Formal Methods, 2009. Springer, pp 806-809.
[13] LiJ,ZhangY,ChenX,XiangY (2018) Secure attribute-based data sharing for resource limited
users in cloud computing. Computers & Security 72:1-12.
[14] Li R, Shen C, He H, Gu X, Xu Z, Xu C-Z (2018) A lightweight secure data sharing scheme for
mobile cloud computing. IEEE Transactions on Cloud Computing 6 (2):344-357.
[15] Mazumdar P, Agarwal S, Banerjee A (2016) Azure Architecture. In: Pro SQL Server on
Microsoft Azure. Springer, pp 19-34.
[16] NadonJ (2017) Your Content Solution: An Introduction to AWS S3. In:Website Hosting and
Migration with Amazon Web Services. Springer, pp 15-24.

67

[17] Ning J, Cao Z, Dong X, Liang K, Wei L, Choo K-KR (2018) CryptCloud+: secure and
expressive data access control for cloud storage. IEEE Transactions on Services Computing.
[18] O’connor MA (2003) Method of enabling heterogeneous platforms to utilize a universal file
system in a storage area network. Google Patents.
[19] Rawal BS, Vijayakumar V, Manogaran G, Varatharajan R, Chilamkurti N (2018) Secure
disintegration protocol for privacy preserving cloud storage. Wireless Personal
Communications:1-17.
[20] Reddin T, Kelleher LN, Coles A, Edwards A (2015) Persistent volume at an offset of a virtual
block device of a storage server. Google Patents.
[21] Ren K, Wang C, Wang Q (2012) Security challenges for the public cloud. IEEE Internet
Computing 16 (1):69-73.
[22] Shen J, Zhou T, Chen X, Li J, Susilo W (2018) Anonymous and traceable group data sharing
in cloud computing. IEEE Transactions on Information Forensics and Security 13 (4):912-925.
[23] Shetty J, Anala M, Shobha G (2015) An approach to secure access to cloud storage service.
International Journal of Research 2 (1):364-368.
[24] ThomasFC,WalkerPM,LipinskiGJ (2017)Direct attached storage system and method for
implementing multiple simultaneous storage schemes. Google Patents.
[25] XueK, ChenW, LiW, HongJ, HongP (2018) Combining Data Owner-Sideand Cloud-Side
Access Control for Encrypted Cloud Storage. IEEE Transactions on Information Forensics and
Security 13 (8):2062-2074.

68

	2.1. System Architecture.
	2.2. User mode.
	2.3. Alone-user mode.
	2.4. Multi-user mode.
	2.5. Design MDSS.
	2.6. User Identity Authentication.
	2.7. User Operation Authentication.
	2.8. AWS S3 API Compatible module.
	2.9. User Operation API module.

